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ABSTRACT
Impairment in cellular bioenergetics as 
either the cause, consequence, or ma-
jor contributor of tissue damage has 
drawn increasing scientific curiosity 
across aging and chronic health condi-
tions, with mitochondrial dysfunction 
emerging as a central mechanism in the 
pathogenesis of a variety of inflamma-
tory and degenerative disorders. Be-
yond bioenergetics, mitochondria play 
critical regulatory roles in programmed 
cell death of dysfunctional/defective 
cells as well as in metabolite synthe-
sis and metabolic signalling. Further, 
extra-cellular exposure to fragmenta-
tion of injured mitochondria is associ-
ated with incitement of systemic and 
organ-based inflammation. Thus, mito-
chondrial function has recently drawn 
intense, spectral scientific interest as an 
integral component across maladies.
In muscle, mitochondrial dysfunction 
is clinically associated with atrophy 
and diminished endurance. Direct myo-
histopathological evidence character-
ising loss of mitochondrial integrity 
as a hallmark of muscle compromise 
was first noticed in inclusion body my-
ositis (IBM). This was followed by the 
discovery of multiple deletions in mi-
tochondrial DNA in sarcopenia, IBM, 
and other inflammatory myopathies, 
like dermatomyositis. Though fraught 
with bioethical considerations, the 
transplant technology of mitochondrial 
transfer is swiftly gaining prominence 
in cellular biology and muscle physiol-
ogy to remediate mitochondrial diminu-
tion and dysfunction. Assembling semi-
nal works and recent developments, 
this review ventures into the rapidly 
evolving landscape of mitochondrial 
transfer, focusing on its implications 
on muscle function, and offers an in-

tegrated perspective on the potential 
roles of mitochondrial transfer and its 
implications for preserving and restor-
ing muscle health. Presented here is a 
consolidated viewpoint on mitochon-
drial transfer in idiopathic inflamma-
tory myopathies.

Introduction
The term “mitochondria” was first in-
troduced in 1898, in Greek mito mean-
ing ‘thread-like’, and khondrion mean-
ing ‘grain or granule’, possibly refer-
ring to each mitochondrion’s plicated 
inner matrix, where much of its activity 
occurs (1). Mitochondria, passed down 
through generational matrilinear inher-
itance (2), harbour their own genome, 
distinct from that of the deoxynucleic 
acid (DNA) in the host’s nuclei.
Tissue regeneration and repair, as well 
as the vital and regulatory function of 
each organ system, require tremendous 
energy from their constituent cells (3, 
4). Depending on their resident tissue, 
this energetic heft is supplied by hun-
dreds to thousands of mitochondria, 
except erythrocytes, which usually car-
ry none (5). For this reason, mitochon-
dria had been referred to as ‘the power-
house of cells’ (6, 7) or ‘bioblasts’ (8), 
a term used historically by early cell 
biologists. Outside their primary func-
tion in bioenergetics, mitochondria are 
postulated to serve essential modulato-
ry roles in the systematic eradication of 
aberrant or impaired cells, particularly 
in the context of apoptotic regulation 
(9). Additionally, they are implicated in 
the synthesis of metabolites and play a 
pivotal role in intra- and extra-cellular 
metabolic signalling (10, 11). Moreo-
ver, the external cellular milieu’s ex-
posure to fragmented portions of dam-
aged mitochondria correlates with the 
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elicitation of inflammatory responses 
and injury (12). 
Cellular bioenergetic dysregulation, 
particularly mitochondrial dysfunction, 
is increasingly acknowledged in schol-
arly research as a key factor in the aeti-
opathogenesis of various inflammatory 
and degenerative diseases (13, 14).
Mitochondrial culpability has been im-
plicated across clinical syndromes and 
maladies such as chronic fatigue (15), 
chronic kidney disease (16), metabolic 
syndromes such as diabetes and obe-
sity (17, 18), and oncogenesis (19). 
Particularly in muscle, mitochondrial 
diminution and dysfunction are de-
monstratively associated with sarco-
penia (20), diminished muscle endur-
ance (21, 22), muscle atrophy (23), 
and cardiac dysfunction (24), among 
many other syndromes (25). Idiopathic 
inflammatory myopathies (IIMs) are 
a spectrum of heterogeneous diseases 
that are often multi-system in nature, 
involving skin, joints, vascular, car-
diac, gastrointestinal, pulmonary, and 
other extra-muscular manifestations. 
Though mitochondrial dysfunction has 
been implicated in the health of these 
organs, this review will focus on mito-
chondrial dysfunction in muscle.
Mitochondria comprise approximately 
6% of muscle fibre volume (26-28), fur-
ther corroborating the substantial role 
that mitochondrial impairment plays 
in muscle conditions like idiopathic 
inflammatory myopathies (IIM) (29). 
Direct evidence of loss of mitochon-
drial integrity as a hallmark of muscle 
compromise was first noticed in inclu-
sion body myositis (IBM), in which 
cytochrome c oxidase (COX)-deficient 
fibres are commonly seen on muscle 
histopathology (30). This finding was 
followed by the discovery of multiple 
deletions in mitochondrial DNA (mtD-
NA), with an increase in heteroplasmy 
when compared to healthy individuals 
(31). Heteroplasmy refers to the pres-
ence of both normal and mutated mtD-
NA within a cell (32), for which propor-
tionality can vary among individuals, 
and even among different tissues within 
the same individual (32-34). Clinically, 
the degree of heteroplasmy favouring 
mutated mtDNA often correlates with 
disease severity and symptomatology 

(33, 35). Perturbations in mtDNA are 
not exclusive to IBM, though, being 
also reported in dermatomyositis (DM) 
(36), and sarcopenia (37). A mismatch 
between increased energy demand, in 
face of stress conditions, and the failure 
of mitochondria to supply this demand 
could represent one of the final steps in 
all IIM, which eventually leads to mus-
cle loss (29).
Mitochondrial transfer, a novel and 
promising approach in cellular and 
muscle biology, offers a solution to mi-
tochondrial dysfunction and depletion. 
This review consolidates literature on 
the role of mitotherapy in IIM, focusing 
on its effects on muscle function and 
health.

The importance of 
mitochondria in cellular 
physiology and energy metabolism
Mitochondria, central to cellular en-
ergy dynamics, calcium homeostasis, 
and apoptosis, play a fundamental role 
in muscle tissues, where they cater to 
high-energy demands and foster mus-
cle health (38, 39). Recent years have 
witnessed significant advances in our 
understanding of mitochondrial func-
tions, chiefly the phenomenon of mi-
tochondrial transfer, a process through 
which mitochondria are relocated be-
tween cells, indicating a new dimension 
in intercellular communication and co-
operation for modulating inflammatory 
response (40-42). With its implications 
in muscle physiology, this transfer pro-
cess hints at potential transformative 
approaches to muscle regeneration and 
repair, thereby inciting substantial re-
search efforts aimed at delineating the 
pathways that facilitate these transfers 
and understanding their therapeutic 
ramifications (43, 44). 
Mitochondria are the site of aerobic res-
piration, a crucial metabolic pathway 
that manufactures adenosine triphos-
phate, the cellular energy currency, via 
oxidative phosphorylation and, conse-
quentially, mitochondria are also a main 
generator of reactive oxygen species 
(ROS) (45, 46). ROS are essential for 
signalling pathways and maintaining 
cellular balance; however, when cells 
are under stress, there is a notable in-
crease in ROS levels (47). Given their 

reactivity, ROS can alter proteins, lipids, 
and other oxygen species, resulting in a 
state commonly referred to as oxida-
tive stress (47), leading to mutations in 
mtDNA, impairing the mitochondrial 
respiratory chain, modifying membrane 
permeability, and affecting Ca2+ homeo-
stasis (39, 48). Consequently, maintain-
ing ROS levels within physiological 
limits is crucial for the optimal func-
tioning of various cell types throughout 
the organism. Therefore, mitochondria 
serve as central regulators in the deli-
cate balance between cellular survival 
and death, overseeing processes funda-
mental to the vitality and functionality 
of eukaryotic cells (49).

Clinical relevance of 
mitochondrial dysfunction, 
with emphasis on muscle function
Mitochondrial dysfunction stands as 
a pivotal culprit behind a spectrum of 
diseases and health conditions, encom-
passing neurodegenerative disorders 
(50), cardiovascular diseases (51), dia-
betes (17), chronic kidney disease (52), 
and other progressive chronic health 
conditions (40), acting as a silent or-
chestrator of cellular distress. The ag-
ing process is marked by a declining 
mitochondrial function, and a parallel 
surge in ROS production (53) associ-
ated with a lower mtDNA copy num-
ber, and increased heteroplasmy levels, 
especially evident in persons above 70 
years old (33). 
In the context of muscular physiology, 
the repercussions of mitochondrial dys-
function are clinically profound and 
multifaceted, culminating in muscle 
atrophy and impaired endurance (54). 
Of note, differential mitochondrial dis-
tribution between muscle fibres points 
towards the fibres’ distinct metabolic 
needs and functional attributes, which 
consequently renders them either vul-
nerable or resilient to mitochondrial 
perturbations. Type I (slow-twitch) 
fibres, optimised for endurance and 
sustained activities, are generously 
endowed with mitochondria, under-
scoring their aerobic proficiency. In 
contrast, type II (fast-twitch) fibres, tai-
lored for quick and explosive actions, 
have a comparatively diminished mito-
chondrial content (55).  
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In chronic presentations of polymy-
ositis and DM, attenuated muscular 
endurance may be attributable to an 
insufficiency of oxidative, type I my-
ofibres (56). Notably, an overrepre-
sentation of type II myofibres is dis-
cerned in IIM, more so in longstanding 
cases, but remains less pronounced in 
untreated, newly onset patients (57). 
Pertinently, in conditions like DM, a 
multifarious effect on myofibre tax-
onomy is evident, elucidating the dis-
parate histopathological shifts across 
these myopathies in which both Type 
I and II myofibres display perifascicu-
lar atrophy (58). Similarly, sarcopenia, 
an age-associated condition, demon-
strates a fibre-type-specific reduction 
in muscle size, with a notable 10-40% 
diminution in Type II fibres, while 
Type I fibres remain largely unaltered 
(59). Cellular senescence reveals the 
potential for aging cells to rejuvenate 
through mitochondrial acquisition, of-
fering prospects for strategies targeting 
age-associated disorders (60).

Evolutionary perspective 
of mitochondrial transfer
The concept of mitochondria being 
transferred between cells has its origins 
in observations of mitochondrial dy-
namics, including mitochondrial fusion 
and fission (61). Further, stem cells 
were observed to donate mitochondria 
to cells that had malfunctioning mito-
chondria (62), the same also applying 
to bone marrow-derived stromal cells, 
which could rescue neighbouring cells 
with mitochondrial dysfunction (63). 
In yet another facet, cancer cells could 
acquire mitochondria from surround-
ing stromal cells, possibly to enhance 
their metabolic capabilities (64). The 
exact mechanisms, significance, and 
implications of this transfer, especially 
in different disease contexts, are still 
areas of active research.
The primary hypothesis suggests that 
this capability arose as a survival mech-
anism, enabling cells to maintain cel-
lular homeostasis and endure stressful 
conditions such as hypoxia (65, 66) and 
inflammation (67). By replacing dam-
aged or malfunctioning mitochondria, 
cells can preserve their energy pro-
duction, thereby enhancing the overall 

health and viability of a tissue or organ-
ism (63). This cellular exchange could 
be conceptualised as a manifestation of 
altruism at the microscopic level, serv-
ing to augment the collective vitality 
and resilience of a tissue or organism. 
Additionally, this mechanism may have 
its evolutionary roots in the symbiotic 
relationship formed between early eu-
karyotic cells and the progenitors of 
mitochondria. According to the endo-
symbiotic theory, mitochondria origi-
nated from a type of bacteria that was 
engulfed by eukaryotic cells, establish-
ing a mutually beneficial relationship 
(68). This initial interaction may have 
driven the evolution of mechanisms for 
mitochondrial transfer between cells, 
enabling organelle sharing to enhance 
cellular survival and adaptability in 
varying environments.
Advantages apart, there is an inherent 
risk of propagating mitochondrial dis-
eases via the transfer of dysfunctional 
organelles (69), and this process might 
also inadvertently sustain the life of 
cells destined for elimination, thereby 
potentially nurturing the persistence of 
cancer cells (70).

Mitochondrial transfer: 
basic biology, mechanisms, 
factors and consequences
Navigating through the intricate laby-
rinth of cellular dynamics, we encoun-
ter a variety of factors that serve as cat-
alysts for mitochondrial transfer (63, 
71). Scientists have stumbled upon an 
intriguing survival strategy that cells 
employ when faced with adversity. 
In conditions where oxygen becomes 
scarce, cells do not merely resign to 
their fate. Instead, they exhibit an al-
most neighbourly act of sharing es-
sential organelles – their mitochondria 
(66, 71-73). The orchestration of mi-
tochondrial transfer is also speculated 
to be influenced by inflammatory sig-
nals, with certain cytokines, inflamma-
tory mediators, and cells such as mac-
rophages (74) as key regulators of this 
process. Furthermore, metabolic fluxes 
and energetic demands of cells might 
be the guiding forces behind mitochon-
drial transfer (75, 76). Intriguingly, 
while calcium is central to cellular 
metabolism and intimately linked with 

mitochondria (77), its role in instigat-
ing mitochondrial transfers remains an 
enigma.
Many are the pathways by which mi-
tochondria are delivered from one cell 
to another, but the one mechanism that 
stands as having greater biological rel-
evance is by the formation of tunneling 
nanotubes (TNTs). Their composition, 
the regulatory elements dictating their 
formation, and the selectivity of the 
transfer process remains largely un-
known (78, 79). Additionally, vesicu-
lar transport mechanisms such as mi-
crovesicles and exosomes (80-82), and 
direct contact and gap junction chan-
nels mediated by connexin 43, where 
mitochondria might traverse through 
direct cytoplasmic connections or 
through channels established between 
cells, may also serve as conduits (83, 
84). More speculative mechanisms in-
clude cytoplasmic fusion (85), which 
can create a “kiss-and-run” (86) phe-
nomenon involving direct and transient 
cellular contacts. Lastly, mitochondria, 
or their components, devoid of carriers, 
possess the capability to be expelled 
and subsequently internalised. This 
translocation occurs through the intri-
cate mechanisms of exocytosis and en-
docytosis, whereby cellular materials 
are selectively exported and imported, 
facilitating the exchange of mitochon-
drial components without the necessity 
of a carrier (43). 

Mitochondrial transfer technology
Mitochondrial transfer is a technique 
that refers to the delivery of either in-
tact mitochondria, or mitochondrial 
components, such as RNA, DNA, or 
proteins, from one cell to another (40, 
87). Preliminary studies have high-
lighted the significant potential of mi-
tochondrial transfer for the regenera-
tion of damaged tissues and alleviation 
of symptoms in various diseases and 
tissues, including the heart, skeletal 
muscle, and even immune cells (41, 
44, 88). Mitochondrial transfer reduces 
ROS emissions and improves cellu-
lar respiration, suggesting that mito-
chondrial trafficking and bioenergetic 
reprogramming could be effective in 
maintaining tissue homeostasis and 
treating various diseases (89). 
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Various strategies have been employed 
in the pursuit of artificial mitochondrial 
transfer (90), from the seminal coin-
cubation method used in 1982 (91) to 
more advanced techniques such as mi-
croinjection (92, 93) and photothermal 
nanoblade (94). Additional methods 
leverage the TOM22 receptor complex 
situated on the mitochondrial mem-
brane as a tethering point to ease the 
internalisation of transferred mitochon-
dria, illustrated by the Pep-1 (95, 96) 
and Magnetomitotransfer approaches 
which uses a magnet-mediated meth-
odology, in which mitochondria, con-
jugated to paramagnetic beads, are 
translocated into target host cells (97). 
The MitoCeption technique, amalgam-
ating thermal shock with centrifuga-
tion, serves to amplify the assimilation 
of mitochondria (98). 
Whichever technique is adopted, one 
may keep in mind that mitochondrial 
transfer is, though on a microscopic 
level, a type of transplantation. Foreign 
mtDNA transfer into cells presents crit-
ical ethical and safety challenges, such 
as the risk of mitochondrial rejection 
and unforeseen genetic consequences, 
highlighting the vital importance of 
comprehensive, nuanced scientific re-
search in the field of mitochondrial 
transfer (99). 

Idiopathic inflammatory 
myopathies: time to shift the 
focus from the “inflammation” 
to the “myopathy” on their 
definition
Skeletal muscle functionality is criti-
cally dependent on mitochondrial ener-
gy production, as evidenced by muscle 
dysfunction being a primary symptom 
in mitochondrial pathologies (100). As 
such, the intricacies of mitochondrial 
dysregulation in primary mitochondrial 
myopathies have been much investigat-
ed, to achieve a better understanding of 
the pathogenesis behind this complex 
group of rare genetic diseases (101). 
On the other hand, mitochondria have 
been largely neglected by those explor-
ing the field of idiopathic inflammatory 
myopathies (IIM). Loss of mitochon-
drial homeostasis as a core characteris-
tic of IIM has been acknowledged just 
in the past two decades (102).

Treatment for IIM revolves essentially 
around immunosuppression, which 
usually leads to an initial good clini-
cal response in up to three-fourths of 
patients (103, 104). Except for IBM 
(105), IIM are characteristically sen-
sitive to immunosuppression or im-
munomodulatory therapy, to the point 
that, in dealing with non-responders, it 
becomes imperative to revise the pri-
mary diagnosis (106). Recurrence is 
frequent with glucocorticoid tapering, 
and a significant study indicates that 
prolonged disease duration (>5 years) 
correlates with increased dependence 
on walking devices, highlighting long-
term disability (107). As the disease 
progresses, the final pathway for all 
IIM is, in varying degrees, muscle at-
rophy and fat replacement. Indeed, be-
tween 1 in 7 to 1 in 4 patients develop 
measurable muscle atrophy on imaging 
studies, and, on average, half of them 
show signs of fat replacement (108). 
Thus, even though quenching of the 
initial inflammatory process remains 
the focus of early disease treatment, 
innovative therapies directed against 
muscle fibre loss would be of great 
benefit by shifting the focus from the 
immune system to the impaired tissue 
– the muscle – and to the impaired or-
ganelle – the mitochondria.
The diverse and dynamic ways by which 
disruption of mitochondrial homeosta-
sis is linked to the etiopathogenesis of 
IIM is outside the scope of this review, 
having been extensively outlined else-
where (29). Within IIM, histopathologi-
cal evidence of mitochondrial dysfunc-
tion is most significant and most com-
monly encountered in IBM (109-111). 
Indeed, deficiency of cytochrome c 
oxidase (COX) staining on histochem-
istry is a hallmark of IBM, though not 
pathognomonic (111). COX is one of 
the main enzymes responsible for the 
respiratory chain in the mitochondria 
christae, and three of its thirteen subu-
nits are encoded by mitochondrial (as 
opposed to nucleic) DNA (112). It is 
conceivable that COX-deficient fibres 
may not exclusively function as an in-
dicator of muscle compromise in IBM, 
but rather, there exists the plausible 
hypothesis that they could represent a 
prominent mechanistic pathway under-

lying the onset of muscle atrophy in this 
disorder.
In primary mitochondrial myopathies, 
the first described stop-codon muta-
tion on mtDNA, inducing a decrease 
of over 90% of COX activity in muscle 
fibres, was reported in a patient with 
marked exercise intolerance and proxi-
mal myopathy (113). After that pivotal 
demonstration of inherited mutated 
mtDNA causing muscle dysfunction, 
interest has expanded to somatic mu-
tations and polymorphisms of mtDNA 
in acquired myopathies. An enlarged 
number of deletions and duplications, 
increasing the level of heteroplasmy by 
10 times or more than that of controls, 
has been described in muscle samples 
from IBM patients, in addition to a 
decrease of mtDNA copy number of 
42% to that of controls (31). While one 
could argue that those findings merely 
represent cumulative damage of long-
standing illness in an aged population, 
as the majority of the patients in that 
cohort had 3 or more years of disease 
duration, such an argument was put 
into check by another study from the 
same group of researchers. More re-
cently, they evidenced a depletion of 
mtDNA copy number also in DM pa-
tients, most of them with a disease du-
ration of only about 3 months (36). In 
face of the growing evidence of mtD-
NA perturbation as a prominent feature 
of IIM from the very beginning, and 
not only as a late manifestation, tech-
niques, and therapies to lower the level 
of mtDNA heteroplasmy as a means 
to restore muscle homeostasis, have 
gained mounting interest.

Cellular enhancement 
through mitochondrial activity 
Mitochondrial replacement therapy is 
promising for correcting the heightened 
heteroplasmy in diseased muscle cells 
by introducing healthy mitochondria, 
thus increasing the proportion of wild-
type over-mutated mtDNA copies per 
cell (114). While mitochondria can be 
easily manipulated in in vitro models, 
the feasibility of successful transfer in 
in vivo models is more challenging, but 
even so attainable (40). The transfer of 
mitochondria between cells can occur 
in several ways, but the most relevant 



398 Clinical and Experimental Rheumatology 2024

Mitochondrial transfer and muscle function in IIM / J.A. Gonzalez-Chapa et al.

one seems to be through TNTs, tempo-
rary connections made by a protruding 
cell membrane (70). 
A study found that exposing astrocytes 
to hydrogen peroxide, a stressor, in-
duces TNT formation. Stressed cells 
extend these filaments to unstressed 
cells, receiving healthy organelles, 
which then enhance their resistance 
to damage (115). In another study, ex-
posure to pro-inflammatory cytokine 
tumor necrosis factor-alpha engaged 
TNT formation by epithelial cells, fa-
cilitating mitochondria donation from 
co-cultured mesenchymal stem cells 
(116). Contrary to the notion of altru-
istic intercellular support, Phinney et 
al.’s study suggests that mesenchymal 
stem cells expel depolarised mitochon-
dria to boost their survival, with the 
recipient cells’ bioenergetic improve-
ment being an incidental benefit (80).

Restoring muscle function 
by reverting mitochondria 
dysfunction: what experimental 
models teach us
To replicate the observed intercellular 
mitochondrial movement in vitro and 
explore its implications, two condi-
tions are essential: traceability of the 
mitochondria and measurability of 
their impact on the recipient cell. The 
former can be accomplished by tagging 
the mitochondria, for example, with a 
fluorescent protein (117), and the latter 
by several techniques, but one in par-
ticular deserves mention: the creation 
of cybrids (118).
Elimination of mtDNA from a cell 
can be achievable by adding ethidium 
bromide to the culture medium, which 
does not harm nucleic DNA, as it is 
protected against its deleterious effects 
by the presence of histones, which are 
lacking, however, in mtDNA (119). 
Cells depleted of mtDNA are named 
ρ0 (rho) cells, and exogenous mtDNA 
can be implanted into them, generat-
ing the so-called cytoplasmic hybrids, 
or cybrids (120). This model permits, 
for instance, to unravel the function of 
a specific mitochondrial gene: as neatly 
demonstrated by Kagawa et al., when 
wild-type mtDNA was inserted into fi-
broblasts collected from the skin of a 
patient suffering from MELAS (acro-

nym from mitochondrial encephalomy-
opathy, lactic acidosis and stroke-like 
episodes), COX activity, which is de-
fective in this syndrome, was promptly 
restored (121).
To fully understand mitochondrial 
transfer’s biological significance, more 
complex models are needed. Experi-
ments, mainly using rodents with tissue 
injuries, assess the effects of mitochon-
drial administration. The mitochondria 
originate from either the same animal 
or different cell lines, and their deliv-
ery varies, including direct injection 
into the injured tissue or intravenous 
administration (122). Those in vivo 
models, beyond merely reinforcing 
that an exogenous supply of mitochon-
dria can mitigate organ damage in sev-
eral conditions, also allow us to derive 
important conclusions about technical 
limitations, that would necessarily be 
rectified if we intend to advance in the 
field by transposing those findings into 
clinical practice (123). Proper storage 
of harvested mitochondria is vital for 
therapeutic success, given their sus-
ceptibility to cold injury; preservation 
by freezing can notably reduce their 
functionality  (124). Bearing in mind 
those caveats, mitochondrial transfer 
as a modality of treatment for mus-
cle impairment in IIM is not far from 
becoming a reality: in fact, a Korean 
clinical trial is currently actively en-
rolling DM patients to receive allo-
geneic mitochondria transplantation 
(Clinical Trials ID NCT04976140). 
The study intends to evaluate the effect 
of escalating doses of umbilical cord-
derived mitochondria, administered in-
travenously, to the improvement of the 
standardised metric IMACS-TIS, 12 
weeks after the injection. Results are 
eagerly awaited (125). 

Exercising mitochondrial 
intervention in practice: exercise 
as a modality of mitotherapy
Although evidence on the applicability 
and usefulness of mitochondrial trans-
fer in human disorders continues to 
evolve, practitioners can currently and 
confidently, prescribe a well-validated, 
and universally approved, modality 
of mitotherapy: exercise. The benefits 
of exercise to improve health-related 

quality of life (HRQoL) in patients 
with IIM are ubiquitously accepted 
and further emphasised by increasing 
evidence of endurance-based strength 
training improving mitochondrial en-
zyme activity leading to improved 
levels of inflammation, aerobic capac-
ity as well as muscle endurance and 
strength in IIM patients (126, 127). 
The literature reiteratively asserts ex-
ercise as a disease-modifying interven-
tion, irrevocably demoting the obsolete 
view of rest as a means of “sparing” 
inflamed muscle (128). The positive 
effects of keeping physically active by 
regular exercise cannot be overempha-
sised. Multiple are the mechanisms by 
which standardised exercise training 
improves muscle performance, and it 
is superfluous to mention that improve-
ments are not restricted to the muscle, 
but a positive impact on psychological 
well-being and HRQoL are also no-
ticed (129). Aerobic conditioning was 
demonstrated to increase mitochon-
drial enzymatic activity by 20%, and 
mitochondrial volume by 50%, in bi-
opsies of the vastus lateralis muscle af-
ter a 14-week training, as reported by a 
prospective study that enrolled patients 
with mitochondrial myopathies (130). 
On a molecular level, exercise causes 
the remodeling of mitochondrial chris-
tae, stabilises mitochondrial respirato-
ry complexes, and ultimately heightens 
the efficiency of electron flux (131). In 
effect, it has even been proposed that 
exercise can be a physiological way 
of propelling mitochondrial exchange: 
transfer of mitochondria from satellite 
cells to myocytes has been deemed one 
of the leading mechanisms through 
which resistance training enhances 
muscle function (132). Given all the 
summarised advantages to mitochon-
dria and, consequently, to muscle per-
formance, it is undeniable that exercise 
should be regarded as an essential part 
of the multimodal treatment of patients 
with IIM. 

Future directions 
Mitochondrial transfer is at a pivotal 
moment, poised to redefine regenera-
tive medicine by establishing a direct 
connection between mitochondrial 
intervention and cellular repair. The 
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proposed mechanism involves an in-
tercellular exchange of mitochondria, 
which could revitalise the function of 
mitochondria and tissue in IIM-affect-
ed muscle cells. In vivo mitochondrial 
transplantation, utilising either direct 
tissue injection or circulatory system 
infusion proximal to the target site has 
demonstrated therapeutic potential in 
ameliorating myocardial damage (105, 
133). A crucial consideration in this ap-
proach is the source of the mitochon-
dria, whether autologous, minimising 
the risk of immune rejection while 
keeping the protection of the recipient 
organ, as shown with the heart during 
ischaemic reperfusion injuries (134), 
or allogeneic, which might necessitate 
additional compatibility evaluations. 
IIMs muscle fibres, often characterised 
by mitochondrial dysfunction, play a 
significant role in muscle weakness and 
degeneration, and introducing healthy 
mitochondria could potentially boost 
their energy production and overall 
function. However, advancing mito-
chondrial transfer in IIMs necessitates 
mechanistic studies on donor cell selec-
tion, transfer mechanisms, regulatory 
processes, and immune responses in al-
logeneic transfers, along with refining 
techniques to ensure transferred mito-
chondria’s long-term functionality.

Conclusion
The study of mitochondrial transfer 
is rapidly expanding, creating a rich 
foundation for new research and poten-
tially revolutionary therapies, especial-
ly for conditions like myopathies. By 
exploring its mechanisms, triggers, and 
outcomes in greater detail, we can open 
doors to innovative diagnostic and 
therapeutic approaches, revealing pre-
viously undiscovered complexities in 
how cells communicate and cooperate. 
This emerging field has the potential to 
significantly advance our knowledge 
and application of cellular interaction, 
representing a significant development 
in biomedical science.

Take home messages
• Mitochondrial dysfunction plays an 

essential role in the aetiopathogen-
esis of IIM, albeit its importance has 
emerged only recently (29). 

• Mitochondrial transfer between 
cells occurs as a physiological 
mechanism to supply energy in an 
increased demand state and seems 
to benefit both the donator and the 
recipient cell (43, 70).

• In vitro (ρ0 cells and cybrids) and 
in vivo (exogenous mitochondrial 
transplantation) experimental mod-
els have propitiated advances in our 
knowledge about the role of mito-
chondria in disease modification 
and suggested the feasibility of mi-
tochondrial transfer as a treatment 
modality for several conditions, in-
cluding IIM (125).

• While we wait for clinical data to 
support the applicability of mito-
chondrial transfer in altering IIM 
disease course, one cannot over-
emphasise that physical exercise is, 
actually, a modality of mitotherapy, 
which could and should be pre-
scribed to all patients suffering from 
IIM (128, 129).
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